二次函数是初中数学的重要内容之一,它包括了二次函数的定义、性质、图像、解析式等多个知识点。以下是对二次函数知识点的归纳:
1.定义:二次函数是指形如f(x)=ax_+bx+c(a≠0)的函数,其中a、b、c为常数,a称为二次项系数,b称为一次项系数,c称为常数项。
2.性质:二次函数的性质主要包括对称性、单调性、最值等。对称轴是二次函数图像的中心线,其公式为x=-b/2a;二次函数的单调性取决于a的正负,当a>0时,函数在对称轴左侧递减,右侧递增;当a0且Δ>0时,函数有最小值;当a0时,函数有最大值。
3.图像:二次函数的图像是一个开口向上或向下的抛物线,其顶点坐标为(-b/2a,f(-b/2a))。
4.解析式:二次函数的解析式可以通过顶点坐标公式、对称轴公式、零点公式等方法求得。
5.应用:二次函数在实际生活中有很多应用,例如物体的自由落体运动、抛物线形的桥梁设计等。
以上就是对二次函数知识点的归纳,希望对你有所帮助。
作为九年级数学重难考点之一,二次函数一直被很多同学头疼。下面我整理了初中二次函数知识点总结,!
一、定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
二、二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)。
顶点式:y=a(x-h)^2;+k[抛物线的顶点P(h,k)]。
交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]。
注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a。
三、二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax?+bx+c。
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax?+bx+c=0。
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax?,y=a(x-h)?,y=a(x-h)?+k,y=ax?+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。
当h>0时,y=a(x-h)?的图象可由抛物线y=ax?向右平行移动h个单位得到。
当h<0时,则向左平行移动|h|个单位得到。
当h>0,k>0时,将抛物线y=ax?向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)?+k的图象。
当h>0,k<0时,将抛物线y=ax?向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)?+k的图象。
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)?+k的图象。
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)?+k的图象。
因此,研究抛物线y=ax?+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)?+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax?+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b?]/4a).
3.抛物线y=ax?+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax?+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax?+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?|。
当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax?+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b?)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax?+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)?+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
四、抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)。
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)。
本文来自作者[本金]投稿,不代表机氪号立场,如若转载,请注明出处:http://www.jpker.com/jke/3769.html
评论列表(4条)
我是机氪号的签约作者“本金”!
希望本篇文章《二次函数知识点该怎么归纳?》能对你有所帮助!
本站[机氪号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:二次函数是初中数学的重要内容之一,它包括了二次函数的定义、性质、图像、解析式等多个知识点。以下是对二次函数知识点的归纳:1.定义:二次函数是指形如f(x)=ax_+bx+c(a...