1、正确的看法是,数学不仅拥有真,而且拥有非凡的美——一种像雕塑那样冷峻而朴素的美,一种无须我们柔弱的天性感知的美,一种不具有绘画和音乐那样富丽堂皇的装饰的美,是唯有最伟大的艺术才具有的严格的完美。
——罗素(英国哲学家、数理逻辑学家,分析学的主要创始人,世界和平运动的倡导者和组织者。)
2、善于“退”,足够地“退”,退到原始而不失去重要性的地方,这是学好数学的一个诀窍。
——华罗庚
3、数学是特别适于处理任何种类的抽象概念的工具,在这个领域中它的力量是没有限度的。由于这个原因,一本关于新兴物理的书,只要不是纯粹描述实验的,实质上就必然是数学书。——狄拉克
4、数学是打开科学大门的钥匙,是通向宇宙之美的关键。
——开普勒(德国天文学家、光学家)
5、数学有两个侧面,一方面它是欧几里得式的严谨科学,从这方面看数学是一门系统的演绎科学;但从另一方面来说,创造过程中的数学看起来却像一门实验性的归纳科学。
——玻利亚(数学家和数学教育家)
6、“难”也是如此,面对悬崖峭壁,一百年也看不出一条缝来,但用斧凿,能进一寸进一寸,能得一尺得一尺,不断积累,飞跃必来,突破随之。——华罗庚(世界著名数学家,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者)
7、思索,连续不断的思索,以待天曙,渐渐地见得光明。如果说我对世界有些贡献的话,那不是由于别的,却只是由于我的辛勤耐久的思索所致。——牛顿(英国数学家、天文学家和物理学家)
有趣的数学科普小知识如下:
阿拉伯数字
阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
九九歌
九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。
大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
三、莫比乌斯环
莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。
莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。
初一数学手抄报里面的内容可以写什么
数学确属美妙的杰作,宛如画家或诗人的创作一样 —— 是思想的综合;如同颜色或词汇的综合一样,应当具有内在的和谐一致。以下是数学手抄报的资料内容,欢迎阅读。
初中趣味数学知识
1、 两个男孩各骑一辆自行车,从相距2o英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1o英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2o英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼(john von neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道。
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑。
3、 一架飞机从a城飞往b城,然后返回a城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从a城到b城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从a城飞往b城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从a城飞往b城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的.时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
数学名言
NO1.把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义。
NO2.看《数学形成思想》,不要看《数学变成死相》。
NO3.看《数学中的语言》和《数学中的模式(题型)》。
NO4. 不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点。
NO5. 会用数学公式,并不说明你会数学。
NO6. 如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好!
NO7.浮躁的人容易说:学数学没有用,应该学一些有用的;——是你自己没用了吧!?
NO8.浮躁的人容易问:我到底该怎么学;——别问,学就对了。
NO9.浮躁的人容易问:上课到底把老师的板书记下来好还是跟着老师的思维不记笔记好?——告诉你吧,都好——只要你学就行。
NO10 浮躁的人分两种:a)只观望而不学的人;b)只学而不坚持的人。
NO11请不要做浮躁的人。
NO12 把新奇的解题方法挂在嘴边,还不如把常规的解题方法记在心里。
NO13 数学不仅仅是解题。
NO14 学习解题的最好方法之一就是研究例题。
NO15 在任何时刻都不要认为自己解过的题已经足够多了。
NO16 请阅读《数学教材》,掌握数学的标准用语。
NO17看得懂的例题,请仔细看;看不懂的例题,请硬着头皮看。
NO18. 别指望看第一遍书就能记住和掌握什么——请看第二遍、第三遍。
NO19.不要停留在基本题型这个摇篮上,要学会把基本题型当成零件“组装”出来的综合题。
NO20.不要因为数学中的一些词语与自然语言中的词语看上去相同,就认为它们的意义完全一样。
NO21.学习数学的秘诀是:解题,解题,再解题。
NO22.记住:数学中的概念、对象不只是数学专有的,在其它学科中不要忘了“用数学”。
NO23.请把书上的例题亲自做一遍。
NO24.请找一些习题,把在书上学到的解题方法用上去!
NO25.请重视解题中的细节错误,并在考试前提醒自己。
NO26. 经常回顾自己以前解过的题,并尝试新的解法,把学到的新知识运用进去。
NO27.不要漏掉书中任何一个练习题——请全部做完并记录下解题思路。
NO28. 当你在一个解题思路上完成一半却发现自己的方法很拙劣时,请不要马上丢弃,至少要在用新的更好的方法解完题之后,回过来重新分析一下前面的思路。
NO29.决不要因为题目“很小”就不遵循某些你不熟练的解题规范——好习惯是培养出来的,而不是一次记住的。
NO30.每学到一个数学难点的时候,尝试着对别人讲解这个知识点并让他理解——你能讲清楚才说明你真的理解了。
NO31.保存好你解过的所有习题——那是你最好的积累之一。
NO32.请热爱数学!
乘法加减混合运算。
C.F.Gauss是 德国著名数学家、物理学家、天文学家、大地测量学家.他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名.
华罗庚(1910.11.12—1985.6.12.),世界著名数学家,中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者.国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等.
陈景润(1933年5月22日~1996年3月19日),汉族,福建福州人.中国著名数学家,厦门大学数学系毕业.1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑.而他所发表的成果也被称之为陈氏定理.这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖.1999年,中国发表纪念陈景润的邮票.紫金山天文台将一颗行星命名为“陈景润星”,以此纪念.另有相关影视作品以陈景润为名.
华罗庚(1910年11月12日—1985年6月12日),汉族,江苏金坛金城镇人,是世界著名数学家,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者.在国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等.他为中国数学的发展作出了举世瞩目的贡献.美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”.被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一.
数学格言:
1、 数学是无穷的科学.——外尔(Weil)
2、问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )
3、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )
4、 数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深.——高斯 (Gauss)
5、数学是科学的皇后,而数论是数学的皇后 ——高斯(Gauss)?
6、数学比喻:古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天.他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习".
7、 把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义
8、不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点.
9、会用数学公式,并不说明你会数学.
10、如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好!
2、数学故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ .+97+98+99+100 =?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ .+96+97+98+99+100?
100+99+98+97+96+ .+4+3+2+1?
=101+101+101+ .+101+101+101+101?
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于?
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
3、数学小问题:
(1)在下题数字之间分别添上合适的运算符号.
1()2()3()4=1?
1()2()3()4()5=1?
1()2()3()4()5()6=1?
1()2()3()4()5()6()7=1?
1()2()3()4()5()6()7()8() =1?
(2)改正一个错的符号.
1+2+3+4+5+6+7+8+9=44?
1+2+3+4+5+6+7+8+9=50?
1+2+3+4+5+6+7+8+9=86?
1+2+3+4+5+6+7+8+9=39?
1+2+3+4+5+6+7+8+9=31
本文来自作者[欣雨]投稿,不代表机氪号立场,如若转载,请注明出处:https://www.jpker.com/jke/2519.html
评论列表(4条)
我是机氪号的签约作者“欣雨”!
希望本篇文章《初一数学手抄报有理数的内容》能对你有所帮助!
本站[机氪号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:1、正确的看法是,数学不仅拥有真,而且拥有非凡的美——一种像雕塑那样冷峻而朴素的美,一种无须我们柔弱的天性感知的美,一种不具有绘画和音乐那样富丽堂皇的装饰的美,是唯有最伟大的艺...