1 行程问题 涉及公式速度=路程除以时间
分相遇和追及(环道和直道)
2 工程问题 涉及公式工作效率=工作量除以时间
3 数字问题 两位数用十位上的数×10+个位上的数表示 三位数用百位上的数×100+十位 上 的数+个位上的数 等等
4 利润问题 涉及公式利润率=利润除以进价(成本) 利润=售价-进价
5 等积问题 锻造前的体积=锻造后的体积
6 增长率 降低的百分率问题
初中七年级数学应用题都有哪些类型
1.解:设这列火车的长为x米
∴x/10=(320+x)/18
18x=3200+10x
8x=3200
x=400
答:这列火车的长为400米
2.解:设先安排x人工作
∴(x/40)×4+[(x+2)/40]×8=1
x+2x+4=10
3x=6
x=2
答:先安排2人工作。
初中数学应用题各种类型公式有什么公式可记?
、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完? 还要运x次才能完 29.5-3*4=2.5x 17.5=2.5x x=7 还要运7次才能完 2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90*2 18x=180 x=10 它的高是10米 3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个 4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800 x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵? 平均每行梨树有x棵 6x-52=20 6x=72 x=12 平均每行梨树有12棵 10、一块三角形地的面积是840平方米,底是140米,高是多少米? 高是x米 140x=840*2 140x=1680 x=12 高是12米 11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米? 每件儿童衣服用布x米 16x+20*2.4=72 16x=72-48 16x=24 x=1.5 每件儿童衣服用布1.5米 12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 女儿今年x岁 30=6(x-3) 6x-18=30 6x=48 x=8 女儿今年8岁 13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车? 需要x时间 50x=40x+80 10x=80 x=8 需要8时间 14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元? 苹果x 3x+2(x-0.5)=15 5x=16 x=3.2 苹果:3.2 梨:2.7 15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点? 甲x小时到达中点 50x=40(x+1) 10x=40 x=4 甲4小时到达中点 16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。 乙的速度x 2(x+15)+4x=60 2x+30+4x=60 6x=30 x=5 乙的速度5 17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米? 原来两根绳子各长x米 3(x-15)+3=x 3x-45+3=x 2x=42 x=21 原来两根绳子各长21米 18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元? 每只篮球x 7x+10x/3=248 21x+10x=744 31x=744 x=24 每只篮球:24 每只足球:8 1、运一批货物,一直过去两次租用这两台大货车情况:第一次 甲种车2辆,乙种车3辆,运了15.5吨 第二次 甲种车5辆 乙种车6辆 运了35吨货物 现租用该公司3辆甲种车和5辆乙种车 如果按每吨付运费30元 问货主应付多少元解:设甲可以装x吨,乙可以装y吨,则 2x+3y=15.5 5x+6y=35 得到x=4 y=2.5 得到(3x+5y)*30=735 2、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几?解:原价销售时增加X% (1-10%)*(1+X%)=1 X%=11.11% 为了使销售总金额不变.销售量要比按原价销售时增加11.11% 3、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少? 解:设原价为x元 (1-10%)x-40=0.5x x=100 答:原价为100元 4、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克?解:设加盐x克 开始纯盐是40*8%克 加了x克是40*8%+x 盐水是40+x克 浓度20% 所以(40*8%+x)/(40+x)=20% (3.2+x)/(40+x)=0.2 3.2+x=8+0.2x 0.8x=4.8 x=6 所以加盐6克 5、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。问该商贩当初买进多少个鸡蛋?解:设该商贩当初买进X个鸡蛋. 根据题意列出方程: (X-12)*0.28-0.24X=11.2 0.28X-3.36-0.24X=11.2 0.04X=14.56 X=364 答:该商贩当初买进364个鸡蛋. 6、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?解:设安排生产甲的需要x人,那么生产乙的有(85-x)人 因为2个甲种部件和3个乙种部件配一套,所以 所以生产的甲部件乘以3才能等于乙部件乘以2的数量 16*x*3=10*(85-x)*2 解得:x=25 生产甲的需要25人,生产乙的需要60人! 7、红光电器商行把某种彩电按标价的八折出售,仍可获利20%。已知这种彩电每台进价1996元。那么这种彩电每台标价应为多少元?解:设标价为X元. 80%X=1996×(1+20%) 80%X= 2395.2 X=2994 8、某商店把某种商品按标价的8折出售,可获利20%。若该商品的进价为每件22元,则每件商品的标价为多少元?解::设标价为X元. 80%X=22×(1+20%) 80%X= 26.4 X=33 9、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒?解:(180+160)/(20+24)=7.28秒 10、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止。已知狗的速度为15km/h,求此过程中,狗跑的总路程。解:首先要明确,甲乙的相遇时间等于狗来回跑的时间 所以狗的时间=甲乙相遇时间=总路程/甲乙速度和 =5km/(5km/h+3km/h)=5/8h 所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km 所以甲乙相遇狗走了75/8千米
一, 行程问题
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式 路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置.
相遇问题:速度和×相遇时间=相遇路程
追击问题:追击时间=路程差÷速度差
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
二、 利润问题
现价=原价*折扣率
折扣价=现价/原价*100%
每件商品的利润=售价-进货价=利润率*进价,毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
标价=售价=现价,进价=售价-利润,售价=利润+进价
三、计算利息的基本公式
储蓄存款利息计算的基本公式为: 利息=本金×存期×利率
税率=应纳数额/总收入*100%,本息和=本金+利息
税后利息=本金*存期*利率*(1- 税率)
税后利息=利息*税率
利率-利息/存期/本金/*100%
利率的换算 :
年利率、月利率、日利率三者的换算关系是: 年利率=月利率×12(月)=日利率×360(天);
月利率=年利率÷12(月)=日利率×30(天);
日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式:利润=售出价-成本,利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比,折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间,税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量,溶质的重量÷溶液的重量×100%=浓度,
溶液的重量×浓度=溶质的重量,溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)^n =b 说明:^n指 n次方
六、工程问题
工作效率=总工作量/工作时间,工作时间=总工作量/工作效率 说明:/是分数线,相当于 ÷号,前面是分子,后面是分母
七、赛事,票价问题
赛事
单循环赛:n(n-1)/2
淘汰赛:n个球队,比赛场数为n-1场次
票价则对应的不一样的赛制乘以对应的单价。
本文来自作者[青容]投稿,不代表机氪号立场,如若转载,请注明出处:https://www.jpker.com/jke/5909.html
评论列表(4条)
我是机氪号的签约作者“青容”!
希望本篇文章《初中各年级的数学应用题都分哪几类呀?》能对你有所帮助!
本站[机氪号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:1 行程问题 涉及公式速度=路程除以时间 分相遇和追及(环道和直道)2 工程问题 涉及公式工作效率=工作量除以时间3 数字问题 两位数用十位上的数...